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The partition of unity is an essential ingredient for meshless methods named by GFEM,
PUFEM (partition of unity FEM), XFEM (extended FEM), RKPM (reproducing kernel particle
method), RPPM (reproducing polynomial particle method), the method of hp clouds in the
literature. There are two popular choices for partition of unity: a piecewise linear FEM
mesh and the Shepard-type partition of unity. However, the partition of unity (PU) by a
FEM mesh leads to the singular (or nearly singular) matrices and non-smooth approxima-
tion functions. The Shepard-type partition of unity requires lengthy computing time and its
implementation is difficult. In order to alleviate these difficulties, Oh et al. introduced the
smooth piecewise polynomial PU functions with flat-top, that lead to small matrix condi-
tion numbers, and almost everywhere partition of unity, that can handle essential bound-
ary conditions. Nevertheless, we could not have the smooth closed form PU functions with
flat-top for general polygonal patches (2D) and general polyhedral patches (3D). In this
paper, we introduce one of the most simple and efficient partition of unity, called the (gen-
eralized) product partition of unity. The product PU functions constructed by this method are
the closed form smooth piecewise polynomials with flat-top and could handle background
meshes (general polygonal patches as well as general polyhedral patches) arising in prac-
tical applications of meshless methods.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Meshless methods [1,2,4,12–18,27,28] have several advantages over the conventional finite element method [3,29]. How-
ever, they have some difficulties such as large matrix condition numbers (or singular stiffness matrix), complicated (or non-
smooth) partition of unity (PU) functions, ineffectiveness in handling essential boundary conditions, lengthy computing time
due to complicated PU functions, and so forth.

In order to alleviate these difficulties, Oh et al. [21–26] introduced patchwise RPPM (reproducing polynomial particle
method) with use of the convolution PU functions with flat-top. It was shown in [23] that the PU function with flat-top
lead to the small matrix condition number. However, it is not easy to extend the two-dimensional construction of the con-
volution PU functions to the three-dimensional cases. Oh et al. [23] constructed smooth piecewise polynomial PU func-
tions with flat-top in one-dimensional case. Obviously, the tensor product of these one-dimensional PU functions yields
higher dimensional PU functions with flat-top. However, tensor products of intervals cannot make neither triangular, gen-
eral quadrangular patches (2D), nor tetrahedral, pentahedral, general hexahedral patches, arising in background meshes
for meshless methods.
. All rights reserved.
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In this paper, we introduce a (two and three dimensional) unified method constructing a partition of unity associated with
background meshes. We call this simple method the generalized product method. The procedure of this method is as follows:

� First, we construct a partition of unity on R that consists of two simple smooth piecewise polynomials that look like the
step functions.

� Second, through the coordinate projection from Rd; d ¼ 2;3; onto R, we construct the partition of unity on Rd that consists
of two smooth PU functions with flat-top. Via the proper affine transformations, two PU functions are copied onto each
side (in 2-Dim case), or each face (in 3-Dim case), of a patch, say a polygonal (or polyhedral) patch Q. Then, exactly
one of two PU functions planted on each face is identically 1 on most part of the patch Q (called the flat-top part of Q).

� Finally, The product of those PU functions corresponding to the sides (faces) of Q that are ‘‘1” on the flat-top part of Q
become a smooth PU function with flat-top corresponding to Q.

After introducing some preliminary results in Section 2, the generalized product method to construct smooth partition of
unity is introduced in Section 3. In the same section, we also prove that the generalized product method yields a partition of
unity on a domain X � R2 as well as a domain X � R3. In order to show the effectiveness of this method, two-dimensional
and three-dimensional numerical tests are carried out in Section 4.

We claim that the generalized product method constructing a partition of unity makes meshless methods much more
useful.

2. Preliminary

2.1. Definitions

In this section, we introduce definitions and terminologies that are used throughout this paper.
Let X is the closure of X � Rd, we define the vector space CðXÞ to consist of all those functions / 2 CmðXÞ for which Da/ is

bounded and uniformly continuous on X for jaj ¼ a1 þ � � � þ ad 6 m: In the following, a function / 2 CmðXÞ is said to be a Cm-
function. If W is a function defined on X, we define the support of W as
suppW ¼ fx 2 XjWðxÞ–0g:
For an integer k P 0, we also use the usual Sobolev space denoted by HkðXÞ. For u 2 HkðXÞ, the norm and the semi-norm,
respectively, are( ) ( )
kukk;X ¼
X
jaj6k

Z
X
j@auj2dx

1=2

and jujk;X ¼
X
jaj¼k

Z
X
j@auj2dx

1=2

:

Furthermore, the maximum norm of a function u defined on X is defined by
kuk1;X ¼maxfjuðxÞj x 2 Xg:
A family fUkjk 2 Dg of open subsets of Rd is said to be a point finite open covering of X # Rd if there is an integer M such
that any x 2 X lies in at most M of the open sets Uk and X #

S
kUk.

For a point finite open covering fUkjk 2 Dg of a domain X, suppose there is a family f/kjk 2 Dg of Lipschitz functions on X
satisfying the following conditions:

1. For k 2 D; 0 6 /kðxÞ 6 1; x 2 Rd.
2. The support of /k is contained in Uk, for each k 2 D.
3.
P

k2D/kðxÞ ¼ 1 for each x 2 X.

Then f/kjk 2 Dg is called a partition of unity (PU) subordinate to the covering fUkjk 2 Kg. The covering sets fUkg are called
patches.

By almost everywhere partition of unity, we mean f/k k 2 Dg such that the condition 3 of a partition of unity is not satisfied
only at finitely many points (2D) or lines (3D) on a part of the boundary.

Let x ¼ suppð/Þ. Then xflt ¼ fx 2 xj/ðxÞ ¼ 1g and xnflt ¼ fx 2 xj0 6 j/ðxÞj < 1g are called the flat-top part and the non-
flat-top part of x, respectively. The function / is said to be a function with flat-top if xflt–;. Moreover, f/kjk 2 Dg is called a
partition of unity with flat-top whenever it is partition of unity and /k is a function with flat-top for each k 2 D.

Notice that if f1; . . . ; fn are linearly independent on xflt–;, the product functions, / � f1; . . . ;/ � fn, are also linearly indepen-
dent on x. However, if xflt ¼ ;, the product functions, / � f1; . . . ;/ � fn, could be linearly dependent.

A weight function (or window function) is a non-negative continuous function with compact support and is denoted by
wðxÞ. Consider the following conical window function: For x 2 R,
wðxÞ ¼ ð1� x2Þl; jxj 6 1;
0; jxj > 1;

(
ð1Þ
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where l is an integer. Then wðxÞ is a Cl�1-function. In Rd, the weight function wðx1; . . . ; xdÞ can be constructed from a one-
dimensional weight function as wðx1; . . . ; xdÞ ¼

Qd
i¼1wðxiÞ.

In this paper, we use the normalized window function defined by
wl
dðxÞ ¼ Aw

x
d

� �
; ð2Þ
where A ¼ ½ð2lþ 1Þ!�=½22lþ1ðl!Þ2d� [6] is the constant that makes
R

R
wl

dðxÞdx ¼ 1.
Let K be a finite index set and X denotes a bounded domain in Rd. Let fxjjj 2 Kg be a set of a finite number of uniformly or

non-uniformly spaced points in Rd, that are called particles.

Definition 2.1. Let k be a non-negative integer. Then the functions /jðxÞ corresponding to the particles xj; j 2 K are called
the RPP (reproducing polynomial particle) shape functions with the reproducing property of order k (or simply, ‘‘of
reproducing order k”) if and only if they satisfy the following condition:
X

j2K
ðxjÞa/jðxÞ ¼ xa; for x 2 X � Rd and for 0 6 jaj 6 k: ð3Þ
Note that the RPP shape functions /j; j 2 K, of reproducing order k can exactly interpolate polynomials of degree 6 k.
2.2. Methods of constructing partition of unity

A partition of unity is an essential ingredient of meshless methods. Several methods constructing partition of unity have
been suggested in the literature. The popular partitions of unity are the nodal shape functions corresponding to a Finite Ele-
ment mesh [18,27,28], the particle-partition of unity [5], and the convolution partition of unity [12,22,23,25]. The particle-
partition of unity is also known as the Shepard functions. A variant of this is the signed partition of unity for the hp clouds [4].
These partition of unity have the following salient features:

A: The Nodal shape functions of a finite element space:
� (Use background mesh for the construction). Let T be a simple finite element mesh of X � Rd. Let ua be the nodal

shape functions (the hat functions) corresponding to the nodes xa in the mesh T;a ¼ 1; . . . ;N, respectively. Then
fuaja ¼ 1; . . . ;Ng is a partition of unity.

� (Lower regularity) The hat functions ua are C0 functions.
� (Large Matrix condition number and no flat-top). These PU functions have no flat-top. Therefore, even though,

f a
k ; k ¼ 1; . . . ;Na, are linearly independent local approximation functions on xa ¼ suppðuaÞ, the product functions,
ua � f a

k ; k ¼ 1; . . . ;Na, may not be linearly independent. Hence, the associated stiffness matrix is singular or nearly
singular.

� (Simple numerical integration). The overlapping parts of supports of any two PU functions are members of the back-
ground mesh. Integration is similar to that of the conventional FEM.

� (Closed form functions). The PU functions are of closed form.
� (Imposing essential BC is difficult). Imposing essential boundary conditions is difficult. The penalty methods, the

Lagrange multiplier methods, and the Nietche’s method are suggested.

B: The particle-partition of unity:
� (Use particles for the construction and no background mesh are needed). Instead of a background mesh, particles

x1; . . . ; xN are planted in the domain X � Rd. The scaled window functions wl
ha
ðx� xaÞ, defined by (2) with various

radius ha, are constructed at the particles xa; a ¼ 1; . . . ;N. Here, the locations of particles and the sizes of radius ha

are determined so that X � [N
a¼1xa, where xa denotes the support of wl

ha
ðx� xaÞ. For each a ¼ 1; . . . ;N, let

uaðxÞ ¼ wl
ha
ðx� xaÞ=SaðxÞ, where SaðxÞ is the sum of the window functions wl

hb
ðx� xbÞ such that xa \xb is non-empty.

Then fuaja ¼ 1; . . . ;Ng is a partition of unity subordinate to the covering fxag.
� (Highly regular). The Shepard PU functions uaðxÞ are Cl�1.
� (Large matrix condition number and no flat-top in general). Even though f a

k ; k ¼ 1; . . . ;Na, are linearly independent
local approximation functions on xa, the product functions, ua � f a

k ; k ¼ 1; . . . ;Na, may not be linearly independent.
Thus, the matrix condition number could be very large. However, it is possible to select the particles and radii of
patches xa so that ua become functions with non-empty flat-top ðxflt

a –0Þ. Then, the product functions,
ua � f a

k ; k ¼ 1; . . . ;Na, are linearly independent whenever the local approximation functions f a
k are linearly indepen-

dent on xflt
a (see the flat-top condition of [5]) .

� (Very complicated numerical integration). The overlapping parts of supports of any two PU functions could have lens
shapes and the computation of stiffness matrix is expensive.

� (Closed form functions). The PU functions are complicated rational functions (the signed partition of unity for hp
clouds that is a generalized version of the particle PU, have no closed form). In the higher dimensional cases, tracking
of overlapping parts of PU functions for the computation of stiffness matrices are more difficult than the conventional
finite element meshes.
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� (Imposing essential BC is difficult). Imposing essential boundary conditions is difficult. The penalty methods, the
Lagrange multiplier methods, and the Nietche’s method are suggested.

C: The convolution partition of unity:
� (Use background mesh for the construction). Oh et al. [21–23,25] introduced the convolution method constructing a

partition of unity in which all PU functions are piecewise polynomials with wide flat-top. It is important to note that
the background mesh for the convolution PU is not a FEM mesh, but a simple subdivision of X into disjoint polygons
(polyhedrons). Let fXaja ¼ 1; . . . ;Ng be a subdivision of the domain Xð� RdÞ into patches (hanging nodes are allowed)
so that
XN

a¼1

vXa
ðxÞ ¼ 1; for all x 2 X except those points on @Xa
and d be a fixed small number. Suppose, for each a ¼ 1; . . . ;N, ua ¼ vXa
�wl

d is the convolution of characteristic func-
tion of patch Xa and the scaled window function, then fuag is a partition of unity subordinate to a covering fxag,
where xa ¼ fxjdistðx;XaÞ 6 dg ¼ suppðuaÞ.

� (Highly regular). The convolution PU functions uaðxÞ are Cl�1-functions.
� (Small matrix condition number because of the flat-top condition). If d is small, the convolution PU functions ua have

wide flat-top, and hence the product functions, ua � f a
k ; k ¼ 1; . . . ;Na, are linearly independent whenever the local

approximation functions f a
k ; k ¼ 1; . . . ;Na, are linearly independent on xflt

a , the flat-top part. Thus, the matrix condi-
tion number is small in general.

� (Simple numerical integration). The overlapping parts of supports of any two PU functions is a quadrangle and can be
automatically detected. Thus, since ua are piecewise polynomial, the Gaussian quadrature yield exact integrals for the
product functions ua � f a

k , if the local approximation functions f a
k are polynomials.

� (Not closed form functions). The closed form of the convolution PU functions are not available in general. However, the
computer code to generate the convolution PU functions for two-dimensional case can be found in www.math.unc-
c.edu/~hso/. Moreover, the flat-top parts and non-flat-top parts can be easily determined for numerical integrals of
convolution PU functions.

� (Imposing essential BC is simple). Imposing essential boundary conditions is as simple as that of the conventional FEM.
� (Difficulties). The closed form smooth PU functions for general polygonal patches (2D) and general polyhedral patch-

es(3D) have not been available yet.
Most of popular PU for the meshless methods have some difficulties as listed above. In this paper, we introduce a new

efficient PU that alleviate these difficulties arising in popular partition of unity.
3. One-dimensional partition of unity functions

In this section, we briefly review one-dimensional partition of unity (PU) with flat-top. For details of this construction, we
refer to Oh et al. [23], in which we showed that PU functions with flat-top lead to a small matrix condition number.

Throughout this paper, we reserve the small real number d, usually, 0:01 6 d 6 0:1, for the width of non-flat-top part of
the PU functions.

3.1. One-dimensional partition of unity functions without flat-top

For any positive integer n;Cn�1-piecewise polynomial basic PU functions are constructed as follows: for integers n P 1,
we define a piecewise polynomial function by
/ðppÞ
gn
ðxÞ ¼

/L
gn
ðxÞ :¼ ð1þ xÞngnðxÞ; if x 2 ½�1;0�;

/R
gn
ðxÞ :¼ ð1� xÞngnð�xÞ; if x 2 ½0;1�;

0; if jxjP 1;

8><>: ð4Þ
where gnðxÞ ¼ aðnÞ0 þ aðnÞ1 ð�xÞ þ aðnÞ2 ð�xÞ2 þ � � � þ aðnÞn�1ð�xÞn�1 whose coefficients are inductively constructed by the following
recursion formula:
aðnÞk ¼

1; if k ¼ 0;Pk
j¼0

aðn�1Þ
j ; if 0 < k 6 n� 2;

2ðaðnÞn�2Þ; if k ¼ n� 1:

8>>>><>>>>: ð5Þ
Using the recurrence relation (5), gnðxÞ is as follows:

http://www.math.uncc.edu/~hso/
http://www.math.uncc.edu/~hso/
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g1ðxÞ ¼ 1;
g2ðxÞ ¼ 1� 2x;

g3ðxÞ ¼ 1� 3xþ 6x2;

g4ðxÞ ¼ 1� 4xþ 10x2 � 20x3;

g5ðxÞ ¼ 1� 5xþ 15x2 � 35x3 þ 70x4;

..

. ..
. ..

.

Then, /ðppÞ
gn

has the following properties whose proofs can be found in [23].
� /ðppÞ

gn
ðxÞ þ /ðppÞ

gn
ðx� 1Þ ¼ 1 for all x 2 ½0;1� and 0 6 /ðppÞ

gn
ðxÞ 6 1, for all x 2 R. Hence, /ðppÞ

gn
ðx� jÞjj 2 Z

n o
is a partition of

unity on R.
� /ðppÞ

gn
ðxÞ is a Cn�1-function.

� The gradient of the scaled basic PU function is bounded as follows:
d
dx

/ðppÞ
gn

x
2d

� �h i
6

C
d
; ð6Þ
where the constant C is 6 0:9 for n 6 3.

3.2. One-dimensional convolution PU with flat-top

Using the basic PU function /ðppÞ
gn

defined by (4), we construct a Cn�1-PU function with flat-top whose support is
½a� d; bþ d� with ðaþ dÞ < ðb� dÞ in a closed form as follows:
wðd;n�1Þ
½a;b� ðxÞ ¼

/L
gn

x�ðaþdÞ
2d

� �
; if x 2 ½a� d; aþ d�;

1; if x 2 ½aþ d; b� d�;
/R

gn

x�ðb�dÞ
2d

� �
; if x 2 ½b� d; bþ d�;

0; if x R ½a� d; bþ d�:

8>>>>><>>>>>:
ð7Þ
Here, in order to make a PU function have a flat-top, we assume d 6 ðb� aÞ=3.
Since the two functions /R

gn
; /L

gn
, defined by (4), satisfy the following relation:
/R
gn
ðnÞ þ /L

gn
ðn� 1Þ ¼ 1; for n 2 ½0;1�; ð8Þ
if u ½�d; d� ! ½0;1� is defined by
uðxÞ ¼ ðxþ dÞ=ð2dÞ;
then we have
/R
gn
ðuðxÞÞ þ /L

gn
ðuðxÞ � 1Þ ¼ 1; for x 2 ½�d; d�:
Using the latter equation gives two basic one-dimensional Cn�1 functions
wR
0ðxÞ ¼

1; if x 6 �d;

/R
gn

xþdÞ
2d

� �
; if x 2 ½�d; d�;

0; if x P d;

8>><>>: ð9Þ

wL
0ðxÞ ¼

/L
gn

x�d
2d

� �
; if x 2 ½�d; d�;

1; if x P d;

0; if x 6 �d

8><>: ð10Þ
such that
0 6 wL
0ðxÞ;w

R
0ðxÞ 6 1; wR

0ðxÞ þ wL
0ðxÞ ¼ 1; for all x 2 R: ð11Þ
Let us consider the following background mesh on the domain X ¼ ðA;BÞ � R for the construction of the convolution parti-
tion of unity with wide flat-top:
A < Aþ d 6 k1 < k2 < � � � < kN�1 < kN þ d 6 B;
where ðkjþ1 � kjÞ is larger than 3d, for j ¼ 1; . . . ;N � 1.
Using (7), (9) and (10), we construct a closed form functions defined on X as follows:
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W0ðxÞ ¼ wR
0ðx� k1Þ ðby using ð9ÞÞ;

W1ðxÞ ¼ wðd;n�1Þ
½k1 ;k2 � ðxÞ ðby using ð7ÞÞ;

� � � ¼ � � �
WðN�1ÞðxÞ ¼ wðd;n�1Þ

½kN�1 ;kN �ðxÞ ð by using ð7ÞÞ;

WNðxÞ ¼ wL
0ðx� kNÞ ðby using ð10ÞÞ:
Let us note that these functions are convolution functions as follows: Let v½a;b� be the characteristic function of ½a; b� and wn
d be

the scaled window function defined by (2), then Theorem 3.5 of [23] shows that
W0ðxÞ ¼ the convolution of vð�1;k1Þ and the scaled window function wn
d ;

W1ðxÞ ¼ the convolution of vðk1 ;k2Þ and the scaled window function wn
d ;

� � � ¼ � � �
WN�1ðxÞ ¼ the convolution of vðkN�1 ;kN Þ and the scaled window function wn

d ;

WNðxÞ ¼ the convolution of vðkN ;1Þ and the scaled window function wn
d ;
Therefore, the family of Cn�1-functions fW0;W1; . . . ;WNg is a partition of unity subordinate to the covering
fð�1; k1 þ dÞ; ðk1 � d; k2 þ dÞ; . . . ; ðkN � d;1Þg of X. Note that the width of the overlapping part of any two patches is 2d.

The PU functions defined by (9) and (10) will play important roles for the construction of higher dimensional PU. Even
though the supports of these two function are unbounded, we call them PU functions in what follows. Note that these
two PU functions look like a left step function and a right step function, respectively, provided that d is small.

Remark 3.1. The PU functions defined by (9) and (10) are basic building blocks for the product PU functions defined in the
following sections. These PU functions are highly regular piecewise polynomials. However, in order to take advantage of
piecewise polynomials in the numerical integrations, the integral domains could be divided into several pieces. Therefore, it
is worthy to consider the following cutoff function [20] for the construction of the basic PU functions:
qðtÞ ¼ expð�a=t2Þ; if t > 0;
0; if t 6 0;

(
ð12Þ
where a is a positive constant. Then qðtÞ is in C1ðRÞ. Let
hðtÞ ¼ qðtÞ
qðtÞ þ qð2d� tÞ : ð13Þ
Let
wL
0ðxÞ ¼ hðxþ dÞ; wR

0ðxÞ ¼ 1� hðxþ dÞ ð14Þ
Then these two smooth functions satisfy the conditions (11).

The tensor product of one-dimensional closed form PU functions, defined by (7), gives higher dimensional PU function for
rectangular patches and cubic patches. However, the tensor product of one-dimensional PU functions is unable to yield any
PU functions for triangular, quadrangular, tetrahedral, pentahedral, general hexahedral patches.

In next two sections, we introduce a simple unified method, named by the generalized product method, to construct
smooth closed form partition of unity corresponding to given partition of two-dimensional (or three-dimensional) domain.
The proposed method to construct PU also uses an unstructured background mesh. However, notice that it is not a FEM
mesh, but a simple subdivision of the domain X in which hanging nodes and sides are allowed.

4. The higher dimensional partition of unity with flat-top

4.1. The generalized product partition of unity for two-dimensional domains

Using (9) and (10), we obtain two basic two-dimensional Cn�1-PU functions defined by
WR
x ðx; yÞ ¼ wR

0ðxÞ and WL
xðx; yÞ ¼ wL

0ðxÞ; for all ðx; yÞ 2 R2 ð15Þ
that satisfy
WR
x ðx; yÞ þWL

xðx; yÞ ¼ 1; for all ðx; yÞ 2 R2:
In other words, two functions are the compositions of the coordinate projection, ðx; yÞ ! x, and wR
0;w

L
0, respectively. More-

over, observing WL
x ¼ 1�WR

x may have an advantage on implementing these two basic functions. The graph of WR
x is sketched

in Fig. 1. The schematic diagram for WR
x and WL

x are shown in Fig. 2. That is,



Fig. 1. Sketchy graph of WR
x .

Fig. 2
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WL
xðx; yÞ ¼ 1; if x P d;

WL
xðx; yÞ ¼ 0; if x 6 �d;

0 6 WL
xðx; yÞ 6 1; if jxj 6 d

8><>: and

WR
x ðx; yÞ ¼ 0; if x P d;

WR
x ðx; yÞ ¼ 1; if x 6 �d;

0 6 WR
x ðx; yÞ 6 1; if jxj 6 d:

8><>: ð16Þ
Suppose P1P2
��!

is a straight line connecting two points P1ðx1; y1Þ and P2ðx2; y2Þ with x1 6 x2 such that y1 < y2 if x1 ¼ x2. Then
the angle between the positive x-axis and P1P2

��!
is determined by the following formula:
h ¼ tan�1 y2�y1
x2�x1

� �
; if x2–x1;

h ¼ p=2; if x2 ¼ x1:

(
ð17Þ
Next, we consider an affine transformation on R2 that transforms the straight line P1P2
��!

onto the y-axis:
TP1P2 ðx; yÞ ¼
cosðp=2� hÞ � sinðp=2� hÞ
sinðp=2� hÞ cosðp=2� hÞ

� �
x� x1

y� y1

� �
: ð18Þ
Now, through the transformation TP1P2 , the PU constructed by (15), is transformed to a new PU as follows:
WP1P2 ðx; yÞ ¼ WR
x ðTP1P2 ðx; yÞÞ; WH

P1P2
ðx; yÞ ¼ WL

xðTP1P2 ðx; yÞÞ;
that satisfy
WH

P1P2
ðx; yÞ þWP1P2 ðx; yÞ ¼ 1; for all ðx; yÞ 2 R2: ð19Þ
Note that the straight line P1P2
��!

divides R2 into two patches: Xabove (the above, or the left, of the line P1P2
��!

) and Xbelow (the

below, or the right, of the line P1P2
��!

). Hence, fWP1P2 ;W
H

P1P2
g is the partition of unity of R2 corresponding to the background

mesh fXabove;Xbelowg.
In what follows, applying this two-piece partition of unity on R2 to each side of patches of a background mesh, we build a

closed form partition of unity that will be called the product partition of unity.
Without loss of generality, we assume the domain X is a polygonal domain with vertices A1; . . . ;A6, as shown in Fig. 3. We

consider the following five cases of subdivisions (background meshes) of X, shown in Figs. 3–7. To each of these subdivisions,
we construct the product partition of unity.
. Schematic diagram of basic PU functions WR
x and WL

x in dimension two (left). Transformed basic PU by the affine transformation TP1 P2 (right).



Fig. 3. The diagram of Case I.

Fig. 4. The diagram of Case II.

Fig. 5. The diagram of Case III.
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Case I: Background mesh determined by two intersecting lines. Suppose the background mesh is determined by two inter-
secting lines as shown in Fig. 3. That is, the domain X is partitioned by two intersecting straight lines: L1 ¼ A6A3

���!
and L2 ¼ A1A4

���!
.

Using (17) and (18), we define two affine transformations as follows:
T1 ¼ TA6A3 ; T2 ¼ TA1A4 :
Then, two pairs of PU on R2 are constructed by the following relations:
W1ðx; yÞ ¼ WR
x ðT1ðx; yÞÞ and W�1ðx; yÞ ¼ 1�W1ðx; yÞ;

W2ðx; yÞ ¼ WR
x ðT2ðx; yÞÞ and W�2ðx; yÞ ¼ 1�W2ðx; yÞ:
In other words, we have

� W1 is the PU function corresponding to the upper half plane that is above L1; WH

1 is the PU function corresponding to
the lower half plane that is below L1.



Fig. 6. The diagram of Case IV.

Fig. 7. The diagram of Case V.
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� W2 is the PU function corresponding to the upper half plane that is above L2; WH

2 is the PU function corresponding to
the lower half plane that is below L2.

� W1ðx; yÞ þWH

1 ðx; yÞ ¼ 1; W2ðx; yÞ þWH

2 ðx; yÞ ¼ 1; for ðx; yÞ 2 R2.
Thus, we have the following equalities:

1 ¼ W1 þWH

1

� �
W2 þWH

2

� �
¼ W1W2 þWH

1 W2 þW1W
H

2 þWH

1 WH

2 ¼ WP
4 þWP

1 þWP
3 þWP

2: ð20Þ

In other words, we have

� WP

1 ¼ WH

1 W2; WP
2 ¼ WH

1 WH

2 ; WP
3 ¼ W1W

H

2 , and WP
4 ¼ W1W2, are the PU functions corresponding to the triangular patch

Q1 ¼ A6A1A7, the quadrangular patch Q2 ¼ A1A2A3A7, the triangular patch Q3 ¼ A3A4A7, and the quadrangular patch
Q4 ¼ A4A5A6A7, respectively.

In Fig. 3, the shaded areas Qflt
1 ;Q

flt
2 ;Q

flt
3 ;Q

flt
4 , are the flat-top parts of the four PU functions, WP

1; WP
2; WP

3; WP
4, respec-

tively. The strips bounded by dotted lines, which have 2d-width, are the overlapping parts of adjacent PU functions. E-
ach of these strips contain the non-flat-top parts of these PU functions. Note that for j ¼ 1;2;3;4,

Qflt
j ¼ fðx; yÞ 2 Qjjdistððx; yÞ; LkÞ > d; k ¼ 1;2g:

It is important to note the following:

� For each i ¼ 1;2;3;4, the four functions, W1;W

H

1 ;W2;W
H

2 , are either 1 or 0 on the flat-top region Qflt
i . Moreover, we

observe: for i ¼ 1;2;3;4,

WP
i is the product of only the functions W1;W

H

1 ;W2;W
H

2 ; that equal 1 on Qflt
i :

Thus, the set of these product functions WP
i ji ¼ 1;2;3;4

n o
is called the generalized product partition of unity. We also

call each of these functions a product PU function.
Case II: Background mesh determined by three lines intersecting one another. Suppose the domain X is partitioned by three

straight lines, L1 ¼ A1A8
���!

; L2 ¼ A6A7
���!

; L3 ¼ A5A7
���!

, to have patches Q1; . . . ;Q 7, as shown in Fig. 4.Using (17) and
(18), we define three affine transformations as follows:
T1 ¼ TA1A8 ; T2 ¼ TA6A3 ; T2 ¼ TA5A8 :
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Then, three pairs of PU on R2 are constructed by the following relations:
W1ðx; yÞ ¼ WR
x ðT1ðx; yÞÞ and WH

1 ðx; yÞ ¼ 1�W1ðx; yÞ;
W2ðx; yÞ ¼ WR

x ðT2ðx; yÞÞ and WH

2 ðx; yÞ ¼ 1�W2ðx; yÞ;
W3ðx; yÞ ¼ WR

x ðT3ðx; yÞÞ and WH

3 ðx; yÞ ¼ 1�W3ðx; yÞ:
ð21Þ
Since W1 þWH

1

� �
¼ W2 þWH

2

� �
¼ W3 þWH

3

� �
¼ 1, we have the following seven product PU functions:
1 ¼ W1 þWH

1

� �
W2 þWH

2

� �
W3 þWH

3

� �
¼ W1W2 þWH

1 W2 þW1W
H

2 þWH

1 WH

2

� �
W3 þWH

3

� �
¼ WH

1 W2 W3 þWH

3

� �
þ W1W2 þW1W

H

2 þWH

1 WH

2

� �
W3 þWH

3

� �
¼ WP

5 þ W1W2W3 þW1W
H

2 W3 þWH

1 WH

2 W3
� �

þ W1W2W
H

3 þW1W
H

2 WH

3 þWH

1 WH

2 WH

3

� �
¼ WP

5 þWP
6 þWP

1 þWP
4 þWP

7 þWP
2 þWP

3: ð22Þ
In other words, we have a product partition of unity whose members are the products of some of basic PU functions defined
by (21). That is, � �
� WP
1¼W1W

H

2 W3;W
P
2¼W1W

H

2 WH

3 ;W
P
3¼WH

1 WH

2 WH

3 ;W
P
4¼WH

1 WH

2 W3;W
P
5¼WH

1 W2ðW3Þ;WP
6¼W1W2W3, and WP

7¼ðW1ÞW2W
�
3,

are the PU function corresponding to the triangular patch Q 1¼A7A8A9, the quadrangular patch Q 2¼A6A1A8A7,
the triangular patch Q3¼A1A10A8, the pentagonal patch Q 4¼A10A2A3A9A8, the triangular patch Q 5¼A3A11A9, the
pentagonal patch Q 6¼A11A4A5A7A9, the triangular patch Q 7¼A5A6A7, respectively. Here the PU functions inside
braces, ðWH

2 Þ; ðW3Þ; ðW1Þ, can be dropped because they are 1 on the supports of WP
3;W

P
5;W

P
7, respectively.

In Fig. 4, the strips with 2d-width, bounded by dotted lines, are non-flat-top parts. If we write the union of non-flat-top
parts by Xnflt , then Q flt

i ¼ Q i nXnflt ¼ fðx; yÞ 2 Qijdistððx; yÞ; LkÞ > d; k ¼ 1;2;3g is the flat-top part of Qi for i ¼ 1; . . . ;7. Let
us note the following:
� For i ¼ 1; . . . ;7, the product PU function WP

i is the product of only the functions W1; WH

1 ; W2; WH

2 ; W3; WH

3 , that
equal 1 on Q flt

i .

Case III: Background mesh determined by one line and one ray. A straight line L1 ¼ A7A4
���!

and a ray L2 ¼ A8A9
���!

divide X into three
regions as shown in Fig. 5. Using (17) and (18), we define two affine transformations:
T1 ¼ TA7A4 ; T2 ¼ TA8A9 :
Then, two pairs of PU on R2 are constructed by the following relations:
W1ðx; yÞ ¼ WR
x ðT1ðx; yÞÞ and WH

1 ðx; yÞ ¼ 1�W1ðx; yÞ;
W2ðx; yÞ ¼ WR

x ðT2ðx; yÞÞ and WH

2 ðx; yÞ ¼ 1�W2ðx; yÞ:
Since W1 þWH

1

� �
¼ W2 þWH

2

� �
¼ 1, we have
1 ¼ W1 þWH

1

� �
W2 þWH

2

� �
¼ W1 W2 þWH

2

� �
þWH

1 W2 þWH

2

� �
¼ WP

1 þWH

1 W2 þWH

1 WH

2 ¼ WP
1 þWP

3 þWP
2: ð23Þ
Hence, we have proved that for i ¼ 1;2;3, the product PU function WP
i is the product of only the functions W1; WH

1 ; W2; WH

2 ,
that equal 1 on Q flt

i ¼ fðx; yÞ 2 Q ijdistððx; yÞ; LkÞ > d; k ¼ 1;2g in Fig. 5.
Case IV: Background mesh determined by one line and two rays intersecting at a point so that two rays locate on the left side and

on the right side of the line, respectively.The domain X is partitioned into four patches, Q1; . . . ;Q 4, by one line
L1 ¼ A7A8

���!
and two rays, L2 ¼ A8A4

���!
; L3 ¼ A8A2

���!
, as shown in Fig. 6. Using (17) and (18), we define three affine trans-

formations as follows:
T1 ¼ TA7A8 ; T2 ¼ TA8A4 ; T3 ¼ TA8A2 :
Then, three pairs of PU on R2 are constructed by the following relations:
W1ðx; yÞ ¼ WR
x ðT1ðx; yÞÞ and WH

1 ðx; yÞ ¼ 1�W1ðx; yÞ;
W2ðx; yÞ ¼ WR

x ðT2ðx; yÞÞ and WH

2 ðx; yÞ ¼ 1�W2ðx; yÞ;
W3ðx; yÞ ¼ WR

x ðT3ðx; yÞÞ and WH

3 ðx; yÞ ¼ 1�W3ðx; yÞ:
Since W1 þWH

1 ¼ W2 þWH

2 ¼ W3 þWH

3 ¼ 1, we have the following relations:
1 ¼ W1 þWH

1

� �
W2 þWH

2

� �
W3 þWH

3

� �
¼ W1W2 þWH

1 W2 þW1W
H

2 þWH

1 WH

2

� �
W3 þWH

3

� �
¼ W1W2 W3 þWH

3

� �
þW1W

H

2 W3 þWH

3

� �
þWH

1 W2 W3 þWH

3

� �
þWH

1 WH

2 W3 þWH

3

� �
¼ W1W2 þW1W

H

2 þWH

1 W3 W2 þWH

2

	 

þWH

1 WH

3 W2 þWH

2

	 

¼ WP

1 þWP
4 þWP

3 þWP
2: ð24Þ
In other words, WP
1 ¼ W1W2; WP

2 ¼ WH

1 WH

3 ; WP
3 ¼ WH

1 W3, and WP
4 ¼ W1W

H

2 . Thus, we have proved that for i ¼ 1; . . . ;4, the prod-
uct PU function WP

i is the product of only the functions W1; WH

1 ; W2; WH

2 ; W3; WH

3 , that equal 1 on Q flt
i in Fig. 6.
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Case V: Background mesh determined by straight line(s) with no intersections.
Suppose three lines L1 ¼ A7A10

���!
; L2 ¼ A1A4

���!
; L3 ¼ A8A9

���!
with no intersections divide the domain X into four patches

as shown in Fig. 7. Using (17) and (18), we define three affine transformations as follows:
T1 ¼ TA7A10 ; T2 ¼ TA1A4 ; T3 ¼ TA8A9 :
Then, three pairs of PU on R2 are constructed by the following relations:
W1ðx; yÞ ¼ WR
x ðT1ðx; yÞÞ and WH

1 ðx; yÞ ¼ 1�W1ðx; yÞ;
W2ðx; yÞ ¼ WR

x ðT2ðx; yÞÞ and WH

2 ðx; yÞ ¼ 1�W2ðx; yÞ;
W3ðx; yÞ ¼ WR

x ðT3ðx; yÞÞ and WH

3 ðx; yÞ ¼ 1�W3ðx; yÞ:
Using W1 þWH

1

� �
¼ W2 þWH

2

� �
¼ W3 þWH

3

� �
¼ 1, we have
1 ¼ W1 þWH

1

� �
W2 þWH

2

� �
W3 þWH

3

� �
¼ W1W2 þWH

1 W2 þW1W
H

2 þWH

1 WH

2

� �
W3 þWH

3

� �
¼ W1 þWP

2 þ 0þWH

2

� �
W3 þWH

3

� �
¼ W1 þ WP

2W3 þWH

2 W3

� �
þ WP

2W
H

3 þWH

2 WH

3

� �
¼ W1 þ WP

2 þWP
3

� �
þ 0þWH

3

� �
¼ WP

1 þWP
2 þWP

3 þWP
4: ð25Þ
In other words, WP
1 ¼ W1; WP

2 ¼ WH

1 W2; WP
3 ¼ WH

2 W3, and WP
4 ¼ WH

3 , are the PU functions corresponding to the quadrangular
patches Q 1 ¼ A10A5A6A7; Q2 ¼ A7A1A4A10; Q3 ¼ A1A8A9A4, and Q4 ¼ A2A3A9A8, respectively. Therefore, we have proved that
for i ¼ 1;2;3;4, the product PU function WP

i is the product of only the functions W1; WH

1 ; W2; WH

2 ; W3; WH

3 , that equal 1
on Qflt

i in Fig. 7.
In the following theorem, combining the five cases shown above, we construct a closed form partition of unity with wide

flat-top that corresponds to subdivisions of the domain X arising in the practical applications of meshless methods.

Theorem 4.1. Suppose, for a partition of unity on a domain X, a background mesh on X is constructed by dividing it into the
m-number of convex subregions (patches) Q 1; . . . ;Q m, by the n-numbers of straight lines, rays, or broken lines L1; . . . ; Ln so that, for
each j ¼ 1; . . . ;m,
Qflt
j ¼ fðx; yÞ 2 Qjjdistððx; yÞ; LkÞ > d; k ¼ 1; . . . ;ng; the flat-top part of Qj;
has a positive measure. We assume the following rules and definitions:

1. At each vertex of the partition, no more than two lines or rays can intersect, except Case IV in Fig. 6. That is, only those five cases
shown in Figs. 3–7 and their combinations are allowed.

2. The orientations of lines and rays are as shown in Figs. 3–7. For k ¼ 1; . . . ;n, TLk
is an affine transformation on R2, defined by

(17) and (18), that maps the line Lk onto the y-axis so that orientations can be matched. Using (17) and (18), we define the
n-fairs of basic PU functions by
WR
k ¼ WR

x � TLk
and WL

k ¼ WL
x � TLk

; for each k ¼ 1; . . . ;n: ð26Þ
3. For each j, the patch Qj is surrounded by the lines or rays Lj1; . . . ; Lja and WP
j is defined by the product of each of the 2a basic PU

functions
WR
j1;W

L
j1; . . . ; WR

ja;W
L
ja;
that is 1 on Qflt
j .

Then, WP
j jj ¼ 1; . . . ;m

n o
is a partition of unity on X corresponding to the background mesh fQ jjj ¼ 1; . . . ;mg of the domain X.

Moreover, Q flt
j is the flat-top part of supp WP

j

� �
for j ¼ 1;2; . . . ;m.

Note that the number of basic PU functions used for the product function WP
j is the same as the number of lines surround-

ing the patch Qj (excluding those sides of Qj that lie on the boundary of X). Thus, the PU function WP
j is said to be the product

partition of unity function. We also note that even though the partitioning lines are broken (L1 and L6 in the right-hand side
diagram of Fig. 9), the above rule for the construction of the product PU function holds.

Proof. From (26), for each k ¼ 1; . . . ;n, we have
WL
kðx; yÞ þWR

kðx; yÞ ¼ 1; for ðx; yÞ 2 R2:
and hence,
Yn

k¼1

WL
k þWR

k

� �
ðx; yÞ ¼ 1; for all ðx; yÞ 2 R2: ð27Þ
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The expansion of (27) yields 2n-terms, each of which consists of the product of n basic PU functions. Each term is a non-neg-
ative valued function and the sum of these 2n-terms is 1 on R2 and there also exist terms that are identically zero on R2.
Moreover, each non-zero term of these 2n-terms is a product of n functions and corresponds to one patch Qj. However, if
we drop those among these n functions that are identically 1 on
Q d
j ¼ fðx; yÞ 2 Xjdistððx; yÞ;Q jÞ < dg;
the number of remaining functions is the same as the number of lines or rays surrounding Q j.
For brevity, we adopt the following notation: for k ¼ 1; . . . ;n,
Wk ¼ WR
k ; WH

k ¼ WL
k ¼ 1�Wk:
In the arguments preceding Theorem 4.1, we proved Theorem 4.1 for those five cases of partitions shown in Figs. 3–7.
Now, we show that a proper combination of five cases (Figs. 3–7) leads to a product partition of unity for a general

background mesh of X.
We consider two illustrative examples:
(a) The combination of Cases I and III: From the Case I of Fig. 3 and the Case III of Fig. 5, we have the following:
1 ¼ WP
1

� �
I
þ WP

2

� �
I
þ WP

3

� �
I
þ WP

4

� �
I

h i
WP

1

� �
III
þ WP

2

� �
III
þ WP

3

� �
III

h i
¼ WP

1

� �
I
þ WP

2

� �
I

WP
1

� �
III
þ WP

2

� �
III
þ WP

3

� �
III

h i
þ WP

3

� �
I

WP
1

� �
III
þ WP

2

� �
III
þ WP

3

� �
III

h i
þ WP

4

� �
I

WP
1

� �
III
þ WP

2

� �
III
þ WP

3

� �
III

h i
¼ WP

1

� �
I
þ WH

2 WH

1 W3 þWH

2 WH

1 WH

3 WH

4 þWH

2 WH

1 WH

3 W4
	 


þ W1W
H

2 W3 þW1W
H

2 WH

3 WH

4 þW1W
H

2 WH

3 W4
	 


þ W1W2W3 þW1W2W
H

3 WH

4 þW1W2W
H

3 W4
	 


¼ WH

1 W2 þ WH

2 WH

1 W3 þWH

1 WH

3 þ 0
	 


þ W1W
H

2 W3 þW1W
H

3 WH

4 þWH

2 WH

3 W4
	 


þ W1W2W3 þ 0þW2W
H

3

	 

¼ WP

1 þ WP
2 þWP

5

h i
þ WP

3 þWP
6 þWP

7

h i
þ WP

4 þWP
8

h i
: ð28Þ
Hence, from the schematic diagram in Fig. 8, one can see that, for j ¼ 1; . . . ;8,
WP
j is the product of each of eight PU functions Wk; WH

k ; k ¼ 1; . . . ;4;

that is 1 on Q flt
j ; but not 1 on Qn�flt

j that is; drop those which are 1 on supp WP
j

� �
:

(b) Multiple combinations of Cases I and V: Without loss of generality, we can assume that the domain X is partitioned
into 20 patches by seven lines with various slopes shown in Fig. 9. Let

Wk ¼ WR
k ; WH

k ¼ 1�Wk; k ¼ 1; . . . ;7;

be the seven pairs of PU defined by using (17) and (18) with respect to the seven lines L1; L2; . . . ; L7, shown in Fig. 9. Then for
all point in the domain, the following functions are zero :
W1W
H

2 ; W1W
H

3 ; W1W
H

4 ; W2W
H

3 ; W2W
H

4 ; W3W
H

4 ; ð29Þ
WH

5 W6; WH

5 W7; WH

6 W7: ð30Þ
Fig. 8. The diagram of the combination of Cases I and III.



Fig. 9. (Left) Combination of Cases I and V. (Right) Combining product PU functions to make larger patches.
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However, if any two lines among the four vertically tilted lines ðL1; L2; L3; L4Þ are crossing inside X, some functions in the
list (29) are not identically zero. Whereas, if any two lines among the horizontally tilted lines ðL5; L6; L7Þ are crossing inside X,
some functions in the list (30) are not identically zero.

Using (29) and (30), Eq. (27) can be expanded as follows:
1 ¼
Y7

k¼1

Wk þWH

k

� �
¼ W1W2 þWH

1 W2 þ W1W
H

2 	 0
	 


þWH

1 WH

2

� �Y7

k¼3

Wk þWH

k

� �
¼ W1W2W3 þWH

1 W2W3 þWH

1 WH

2 W3 þ W1W2W
H

3 þWH

1 W2W
H

3

� �
	 0

	 

þWH

1 WH

2 WH

3

� �Y7

k¼4

Wk þWH

k

� �
¼ W1fW2W3W4g þWH

1 W2fW3W4g þ fW1gWH

2 W3fW4g þ WH

1 WH

2

� �
WH

3 W4
�
þ W1W2W3W

H

4 þWH

1 W2W3W
H

4 þWH

1 WH

2 W3W
H

4

� �
	 0

	 

þ WH

1 WH

2 WH

3

� �
WH

4

�Y7

k¼5

Wk þWH

k

� �
¼ W1 þWH

1 W2 þWH

2 W3 þWH

3 W4 þWH

4

� �Y7

k¼5

Wk þWH

k

� �
¼ W1W

H

5 þWH

1 W2W
H

5 þWH

2 W3W
H

5 þWH

3 W4W
H

5 þWH

4 WH

5

� �Y7

k¼6

Wk þWH

k

� �
þ W1W5 þWH

1 W2W5 þWH

2 W3W5 þWH

3 W4W5 þWH

4 W5
� �Y7

k¼6

Wk þWH

k

� �
¼ W1W

H

5 þWH

1 W2W
H

5 þWH

2 W3W
H

5 þWH

3 W4W
H

5 þWH

4 WH

5

� �
þ W1W5W6 þWH

1 W2W5W6 þWH

2 W3W5W6 þWH

3 W4W5W6 þWH

4 W5W6
� �

W7 þWH

7

� �
þ W1W5W

H

6 þWH

1 W2W5W
H

6 þWH

2 W3W5W
H

6 þWH

3 W4W5W
H

6 þWH

4 W5W
H

6

� �
W7 þWH

7

� �
¼ W1W

H

5 þWH

1 W2W
H

5 þWH

2 W3W
H

5 þWH

3 W4W
H

5 þWH

4 WH

5

� �
þ W1fW5gW6W7 þWH

1 W2fW5gW6W7 þWH

2 W3fW5gW6W7 þWH

3 W4fW5gW6W7 þWH

4 fW5gW6W7
� �
þ W1fW5gW6W

H

7 þWH

1 W2fW5gW6W
H

7 þWH

2 W3fW5gW6W
H

7 þWH

3 W4fW5gW6W
H

7 þWH

4 fW5gW6W
H

7

� �
þ W1W5W

H

6 þWH

1 W2W5W
H

6 þWH

2 W3W5W
H

6 þWH

3 W4W5W
H

6 þWH

4 W5W
H

6

� �
W7 	 0

	 

þ W1W5W

H

6 WH

7

� �
þWH

1 W2W5W
H

6 WH

7

� �
þWH

2 W3W5W
H

6 WH

7

� ��
þWH

3 W4W5W
H

6 WH

7

� �
þWH

4 W5W
H

6 WH

7

� ��
ð31Þ

¼ W1W
H

5 þWH

1 W2W
H

5 þWH

2 W3W
H

5 þWH

3 W4W
H

5 þWH

4 WH

5

� �
þ W1W7 þWH

1 W2W7 þWH

2 W3W7 þWH

3 W4W7 þWH

4 W7
� �
þ W1W6W

H

7 þWH

1 W2W6W
H

7 þWH

2 W3W6W
H

7 þWH

3 W4W6W
H

7 þWH

4 W6W
H

7

� �
þ W1W5W

H

6 þWH

1 W2W5W
H

6 þWH

2 W3W5W
H

6 þWH

3 W4W5W
H

6 þWH

4 W5W
H

6

� �
¼

X5

i¼1

WP
i

 !
þ

X20

i¼16

WP
i

 !
þ

X15

i¼11

WP
i

 !
þ

X10

i¼6

WP
i

 !
: ð32Þ
In (31), W5 ¼ 1 on the support of WP
i ; i ¼ 11; . . . ;20; and WH

7 ¼ 1 on the support of WP
i ; i ¼ 6; . . . ;10. Thus, W5ðWH

7 Þ is dropped
from the product functions for WP

i ; i ¼ 11; . . . ;20; ðWP
i ; i ¼ 11; . . . ;20; Þ, respectively. From the schematic diagram in Fig. 9,

one can see that
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WP
j is the product of each of 14 PU functions Wk;W

H

k ; k ¼ 1; . . . ;7;

that is 1 on Qflt
j ; but not 1 on Q nflt

j that is; drop those which are 1 on supp WP
j

� �
:

If some of the partitioning lines are broken lines, then the sum of several terms makes 1 on the whole Qflt
j . For example,

suppose we break the line L6 to make a lager patch in the right hand side diagram of Fig. 9, then the new product PU function

corresponding to this enlarged patch, Q 9 [ Q14, is WP
9 þWP

14

� �
¼ WH

3 W4W5W
H

6 WH

7

� �
þWH

3 W4W5W6 WH

7

� �
¼ WH

3 W4W5W
H

7 , since

W6 þWH

6 ¼ 1.
If we break the line L1 to join Q6 with Q7 (Fig. 9), then the product PU function corresponding to Q6 [ Q7 is

WP
6 þWP

7 ¼ W1W5W
H

6 WH

7

� �
þWH

1 W2W5W
H

6 WH

7

� �� �
¼ W1fW2gW5W

H

6 þWH

1 W2W5{siH6
� �

¼ W2W5W
H

6 , since fW2g and WH

7

� �
are 1

on the support of W1W5W
H

6 . h

Suppose two vertical lines x ¼ aðL1Þ; x ¼ bðL2Þ with a < b and two horizontal lines y ¼ cðL3Þ; y ¼ dðL4Þ with c < d inter-
sect to make a rectangular patch Q rec ¼ ½a; b� 
 ½c; d�. Then, by the rule defined in Theorem 4.1, the PU function corresponding
to Qrec is the same as tensor product of two one-dimensional PU functions defined by (7). In other words, we have
WH

1 W2W
H

3 W4 ¼ wd;n�1
½a;b� ðxÞ 
 wd;n�1

½c;d� ðyÞ;
that justify why partition of unity in Theorem 4.1 is coined to be generalized product PU.
Note that a similar idea is also used in RPEM (reproducing particle element methods) [7–11].
In the following two examples, we consider simple partition of unity in which the generalized product method construct-

ing PU, stated in the Theorem 4.1, does not hold.

Example 4.1. Suppose the domain X is partitioned into four patches, Qi; i ¼ 1; . . . ;4, by the line, L1 and two rays, L2; L3,
shown in the left figure of Fig. 10.

Unlike the above case (IV), both two rays, L2 and L3, are on the one side of the line L1 in this example, as shown in Fig. 10.
Then we have the following:
1 ¼ W1 þWH

1

� �
W2 þWH

2

� �
W3 þWH

3

� �
¼ W1 W2 þWH

2

� �
þWH

1 W2 þWH

2

� �	 

W3 þWH

3

� �
¼ W1W2 W3 þWH

3

� �
þW1W

H

2 W3 þWH

3

� �
þWH

1

	 

¼ W1W2W3 þW1W2W

H

3 þW1W
H

2 þWH

1

	 

¼ W2W

P
4 þW1W

P
3 þWP

2 þWP
1–WP

4 þWP
3 þWP

2 þWP
1:
The globally defined functions, W2W
P
4;W1W

P
3;W

P
2;W

P
1, become a partition of unity on R2, however, they do not satisfy the rules

stated in Theorem 4.1 for the generalized product partition of unity. Note that supp WP
4

� �
� supp W2W

P
4

� �
¼ Mabc in Fig. 10.

Example 4.2. Suppose the domain X is partitioned into five patches, Q1; Q 2; Q3; Q 4A; Q 4B by two lines, L1; L2, and a ray L3,
shown in the right figure of Fig. 10.

In the Case I of Fig. 3, we add a ray L3 to make the partition shown in the right hand side of Fig. 10 so that three lines meet
at one point. Then, we obtain a partition of unity that does not satisfy the rules for the product partition of unity as shown
below:
1 ¼ WP
1 ¼ WH

1 W2
� �

þWP
2 ¼ WH

1 WH

2

� �
þWP

3 ¼ W1W
H

2

� �
þWP

4ð¼ W1W2Þ ¼ WP
1 þWP

2 þWP
3 þWP

4ð¼ W1W2Þ
h i

W3 þWH

3

� �
¼ WP

1 þWP
2 þWP

3 þ W1W2W3 þW1W2W
H

3

	 

¼ WP

1 þWP
2 þWP

3 þ W2W
P
4B þW1W

P
4A

h i
;

in which the last two PU functions do not satisfy the rules for the generalized product method constructing PU.
Fig. 10. Diagrams of non-allowable cases.
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4.2. The generalized product partition of unity for three-dimensional domain

Using (9) and (10), we obtain four basic three-dimensional Cn�1-PU functions defined by
WR
x ðx; y; zÞ ¼ wR

0ðxÞ and WL
xðx; y; zÞ ¼ wL

0ðxÞ; for all ðx; y; zÞ 2 R3;

WR
z ðx; y; zÞ ¼ wR

0ðzÞ and WL
zðx; y; zÞ ¼ wL

0ðzÞ; for all ðx; y; zÞ 2 R3;
ð33Þ
such that
WR
x ðx; y; zÞ þWL

xðx; y; zÞ ¼ 1; for all ðx; y; zÞ 2 R3;

WR
z ðx; y; zÞ þWL

zðx; y; zÞ ¼ 1; for all ðx; y; zÞ 2 R3:
The schematic diagram for WR
x and WL

x are shown in Fig. 11.

Theorem 4.2. Let
Cx
1; . . . ;Cx

Nx
be (vertically slanted or vertical) planes whose intersections with the x–y plane are those lines and rays allowed in Theorem 4.1,
and
Cz
1; . . . ;Cz

Nz
;

be (horizontal or horizontally slanted) planes that are mutually disjoint within the domain X � R3. Suppose X is partitioned into
the M-number of convex subregions Q 1; . . . ;Q M, by vertically slicing with planes, Cx

1; . . . ;Cx
Nx

, and by horizontally slicing with
planes, Cz

1; . . . ;Cz
Nz

, so that, for each I ¼ 1; . . . ;M;Qflt
I ¼ fðx; y; zÞ 2 Q Ijdistððx; y; zÞ;CkÞ > d; k ¼ 1; . . . ;N ¼ ðNx þ NzÞg, the flat-

top part of QI, has a positive measure. We assume the following rules and definitions:

1. The orientations of planes are as usual: the normal vector mk to the plane Ck has the same direction as the vector product of two
non-co-line vectors on the plane Ck, in the counter clockwise direction. For k ¼ 1; . . . ;N, Tk is an affine transformation on R3

that maps the plane Ck onto the x–y-plane so that orientations can be matched.
2. We define the 2N basic PU functions by
WR
k ¼ WR

x � Tk and WL
k ¼ WL

x � Tk; k ¼ 1; . . . ;N ¼ ðNx þ NzÞ: ð34Þ
3. Let WP
I be the product of each of those 2N basic PU functions
WR
k ;W

L
k ¼ 1�WR

k ; k ¼ 1; . . . ;N
that is 1 on Qflt
I , but not identically 1 on Q d

I ¼ fðx; y; zÞ 2 Xjdistððx; y; zÞ;Q IÞ < dg.
Then WP

I jI ¼ 1; . . . ;M
n o

is a partition of unity and the flat-top subregion of the support of WP
I is Qflt

I . The PU function WP
I is the

product of the same number of basic PU functions as the number of planes surrounding the patch QI.

We call the PU function WP
I that is the product of basic PU functions corresponding to planes surrounding the convex sub-

set Q I by the product partition of unity function.

Proof. Using arguments similar to Theorem 4.1, we have the vertical PU functions such that
Fig. 11. Schematic diagram of basic PU functions WR
x and WL

x in dimension three.
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XMx

l¼1

WP
l

� �
v
¼ 1: ð35Þ
Here, Mx is the number of the subregions of X divided by the vertically slanted planes. Using an argument similar to Case V in
the proof of Theorem 4.1, we have the horizontal PU functions such that
XMz

l¼1

WP
l

� �
h
¼ 1; ð36Þ
where Mz is the number of the subregions of X divided by the horizontally slanted planes. Then we have
1 ¼
XMy

t¼1

XMx

s¼1

ðWP
s Þv

" #
WP

t

� �
h
¼
XM

i

WP
i : � ð37Þ
Example 4.3. Suppose a polygonal domain X is partitioned into two wedges and six hexahedrons as shown in Fig. 12 by the
planes: C1ðstiuvb half planeÞ; C2ðBcGJhEÞ;C3ðpqdrsgÞ; C4ðacefghÞ. Note that C1 does not cut through the domain X. That is,
the eight patches in Fig. 12 are
Q 1 ¼ hexahedron : AstEabih; Q 2 ¼ wedge : tsBibc; Q3 ¼ hexahedron : EBqphcdg;Q 4 ¼ hexahedron : pqCDgdef ; Q 5

¼ hexahedron : abihFvuJ; Q 6 ¼ wedge ibcuvG;Q7 ¼ hexahedron : hcdgJGfs; Q 8 ¼ hexahedron : gdefsrHI:
Consider the following affine transformations (rotation and translation) on R3:

1. Tt
s moves the line s! t in Fig. 12 onto the positive y-axis while the x-axis is on the bottom plane;

2. TE
B moves the line B! E in Fig. 12 onto the positive y-axis while the x-axis is on the bottom plane;

3. Tp
q moves the line q! p in Fig. 12 onto the positive y-axis while the x-axis is on the bottom plane;

4. Tcen moves the middle face abcdefgh in Fig. 12 onto the x—y plane.

In order to construct PU functions for the eight patches, using the affine transformations and (33), we now construct basic
PU functions defined on R3 as follows:
W1 ¼ WR
x � Tt

s; WH

1 ¼ 1�W1;

W2 ¼ WR
x � TE

B; WH

2 ¼ 1�W2;

W3 ¼ WR
x � Tp

q; WH

3 ¼ 1�W3;

W4 ¼ WR
z � Tcen; WH

4 ¼ 1�W4:
We define the flat-top part of a patch Q j as follows:
Q flt
j ¼ fðx; y; zÞ 2 Q jj distðCk; ðx; y; zÞÞ > d; k ¼ 1;2;3;4g;
Fig. 12. Three-dimensional domain and partition into eight patches (left); diagram of eight basic PU functions (right).
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where Ck; k ¼ 1;2;3;4, are the four planes partitioning X in Fig. 12. Then, by Theorem 4.2, we obtain the smooth product PU
functions with flat-top as follows:

1. WP
1 ¼ W1W2W

H

4 (the product of those basic PU functions that are one on Q flt
1 ) is a PU function corresponding to patch Q1.

2. WP
2 ¼ WH

1 W2W
H

4 (the product of those basic PU functions that are one on Qflt
2 ) is a PU function corresponding to patch Q2.

3. WP
3 ¼ WH

2 W3W
H

4 (the product of those basic PU functions that are one on Qflt
3 ) is a PU function corresponding to patch Q3.

4. WP
4 ¼ WH

3 WH

4 (the product of those basic PU functions that are one on Qflt
4 ) is a PU function corresponding to patch Q4.

5. WP
5 ¼ W1W2W4 (the product of those basic PU functions that are one on Qflt

5 ) is a PU function corresponding to patch Q5.
6. WP

6 ¼ WH

1 W2W4 (the product of those basic PU functions that are one on Q flt
6 ) is a PU function corresponding to patch Q6.

7. WP
7 ¼ WH

2 W3W4 (the product of those basic PU functions that are one on Q flt
7 ) is a PU function corresponding to patch Q7.

8. WP
8 ¼ WH

3 W4 (the product of those basic PU functions that are one on Q flt
8 ) is a PU function corresponding to patch Q 8.

We can prove directly that these eight functions become a partition of unity. Actually, from the definition of basic PU
functions, for all points in R3, we have
1 ¼ W1 þWH

1

� �
W2 þWH

2

� �
W3 þWH

3

� �
W4 þWH

4

� �
¼ W1W2W3W4 þW1W2W

H

3 W4 þWH

1 W2W3W4 þWH

1 W2W
H

3 W4 þW1W
H

2 W3W4 þWH

1 WH

2 W3W4 þW1W
H

2 W3W
H

4

þWH

1 WH

2 W3W
H

4 þW1W
H

2 WH

3 W4 þWH

1 WH

2 WH

3 W4 þW1W
H

2 WH

3 WH

4 þWH

1 WH

2 WH

3 WH

4 þW1W2W3W
H

4 þW1W2W
H

3 WH

4

þWH

1 W2W3W
H

4 þWH

1 W2W
H

3 WH

4

¼ W1W2W4 W3 þWH

3

� �	 

þ WH

1 W2W4 W3 þWH

3

� �	 

þ WH

2 W3W4 W1 þWH

1

� �	 

þ WH

2 W3W
H

4 W1 þWH

1

� �	 

þ WH

2 WH

3 W4 W1 þWH

1

� �	 

þ WH

2 WH

3 WH

4 W1 þWH

1

� �	 

NoteWH

2 	 1on WH

3 WH

4 ;W
H

3 W4
� �

þ W1W2W
H

4 W3 þWH

3

� �	 

þ WH

1 W2W
H

4 W3 þWH

3

� �	 

¼ WP

5 þWP
6 þWP

7 þWP
3 þWP

8 þWP
4 þWP

1 þWP
2:
Remark 4.1. The above generalized product method constructing PU functions can be applied to most practical background
meshes for meshless methods. The product partition of unity is one of the most simple effective partition of unity for
meshless methods, especially for the patchwise RPPM (reproducing polynomial particle method) to be described in the
following section.
5. Numerical examples

5.1. Patchwise reproducing polynomial particle methods (RPPM)

Consider a model problem
� Duþ u ¼ f in X; ð38Þ
u ¼ gd along CD; ð39Þ
ru � n ¼ gt along CN; ð40Þ
where X is a polygonal domain in Rd, n is the outward normal vector along CN and CD [ CN ¼ @X. We assume that the par-
tition of X into patches and the partition of unity for X are those constructed in the previous section. Then the variational
formulation of the model problem is: find u 2 H1ðXÞ such that u ¼ gd on CD and
Z

X
rv � rudX�

Z
CD

vru � ndCþ
Z

X
uvdX ¼

Z
X

vfdXþ
Z

CN

vgtdC; ð41Þ
for all v 2 H1ðXÞ.
Now, the patchwise RPPM [21,22] for a numerical solution for this problem in two-dimensional case is described as fol-

lows:

1. (Dividing X into patches). To construct PU functions with flat-top and smooth local approximation functions for numer-
ical solutions of (41), the domain X is partitioned into large quadrangular patches and large triangular patches, denoted
by Q I , by using lines and rays satisfying rules in Theorem 4.1. Unlike conventional FEM mesh, the partition of X allows
hanging nodes.

2. (Construction of partition of unity functions with flat-top). For I ¼ 1; . . . ;M, let WP
I be the generalized product PU function

with flat-top corresponding to the patches in the background mesh, and xI be the support of WP
I .
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3. (Planting particles). Let bQ ðtÞ and bQ ðqÞ be the reference triangular patch and the reference rectangular patch, respectively.
Suppose p̂k; k ¼ 1; . . . ;N are arbitrary (or uniformly) distributed particles on the reference patches. Let ut

I
bQ ðtÞ ! xI (if QI

is a triangular patch) and uq
I
bQ ðrÞ ! xI (if Q I is a quadrangular patch) be the patch mappings. Then, through the patch

mappings ut
I or uq

I , we are able to plant particles pIk; k ¼ 1; . . . ;NI; in xI , that are distributed arbitrary (or uniformly).
The conformal mapping uðzÞ ¼ z2 can be used to generate singular local approximation functions [19,22]

4. (Local approximation functions). Suppose ĥk; k ¼ 1; . . . ;N are smooth RPP shape functions corresponding to the particles
planted in the reference patch bQ that satisfy Kronecker delta property. Then these RPP shape functions on the reference
patch can be used to build the local approximation functions on the physical patch xI as follows:
Fig. 13
produc
hIk ¼ ĥk � uq
I

� ��1 ðor ĥk � ut
I

� ��1Þ; k ¼ 1; . . . ;NI: ð42Þ
For example, the following RPP shape function can be used for the reference shape functions ĥk; k ¼ 1; . . . ;N:
� the smooth piecewise polynomial RPP shape functions introduced in [22] can be used. In this case, some particles can

be located outside Qr and particles are uniformly distributed.
� Tensor product of Lagrange interpolation functions corresponding to arbitrary spaced Nx numbers of nodes in the

x-direction and those corresponding to arbitrary spaced Ny numbers of nodes in the y-direction. These are RPP shape
functions and satisfy the Kronecker delta property. The complete polynomials of degree k; fxiyjj0 6 i; j 6 kg, can be
used for local approximation functions, however they do not satisfy the Kronecker delta property.
5. (Smooth global RPP basis functions). Now the global approximation functions with compact support are constructed as
follows:
UIkðx; yÞ ¼ WP
I ðx; yÞ � hIkðx; yÞ; I ¼ 1; . . . ;M; k ¼ 1; . . . ;NI: ð43Þ

These global approximation functions are highly smooth and are corresponding to the particles:

pIk; I ¼ 1;2; . . . ;M; k ¼ 1;2; . . . ;NI:

We also assume that each set fhIkjk ¼ 1; . . . ;NIg, of local approximation functions has the polynomial reproducing prop-
erty, and satisfies the Kronecker delta property at the particles corresponding to local approximation functions on xI ,
namely, hðIiÞðpðIjÞÞ ¼ dj

i .
6. (RPP approximation space). The vector space spanned by those approximation functions defined by (43), denoted by

VRPP , is said to be the RPP approximation space. The Galerkin approximation method with use of this RPP approximation
space VRPP is coined to be patchwise Reproducing Polynomial Particle Method (patchwise RPPM) [22]. Then an RPP approx-
imate solution of the model problem (38)–(40), can be written as
uRPPðx; yÞ ¼
X

I

X
j

cIj �UIjðx; yÞ ¼
X

I

WP
I ðx; yÞ

X
j

cIj � hIjðx; yÞ
" #

: ð44Þ
Since the PU functions WP
I used in (43) have flat-top, the associated stiffness matrix is expected to have a small condition

number.

In order to show the effectiveness of the generalized product PU functions for meshless methods, in particular, the patch-
wise RPPM, we consider two numerical examples: one two-dimensional example and one three-dimensional example.

Example 5.1. Consider Poisson’s equation �Du ¼ f on the a polygonal domain X shown in Fig. 13, whose analytic solution is
uðx; yÞ ¼ ð1� xÞyexþy ð45Þ
The Dirichlet boundary conditions are imposed along the entire boundary of X.
. Diagram of the domain for Example 5.1. The slopes of partitioning lines L1; L2, and L3, respectively, are �1/8, 2/8, and 4/8. The support of the
t PU function WP

2 is the quadrangle abcd.



Table 1
Two-dimensional Poisson’s equation, �Du ¼ f , with analytic solution uðx; yÞ ¼ ð1� xÞyexþy .

�Du ¼ f on non-rectangular domain with essential BC

RPP-order kAbs: errk1 kRel: errkeng Computed Eng Matrix Condition No.

2 6.65E�02 3.69E�02 9.7799002E�00 6.30175E+01
4 3.01E�04 1.71E�03 9.7932129E�00 3.48345E+04
6 5.75E�07 3.39E�05 9.7932415E�00 2.23594E+07
1 9.7932416E�00
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From this example, we observe the following:

1. The absolute errors of computed solutions of Example 5.1 by patchwise RPPM with use of the generalized product PU
functions are shown in Table 1.

2. d ¼ 0:05 is used for those results in Table 1.
3. Unlike other meshless methods, the matrix condition numbers in Table 1 are small since the product PU functions have

wide flat-top.
4. To deal with essential boundary conditions for meshless methods, the Lagrange multiplier methods, the penalty methods

and Nitche’s methods are commonly used in the literature. These methods modify the variational formulation which lead
to large matrix condition numbers when the penalty parameters are increased. On the other hand, since our local approx-
imation functions used in patchwise RPPM satisfy the Kronecker delta property, imposing essential boundary condition
is almost the same as the conventional FEM. If the partitioning lines meet at a (convex or non-convex) corner point, we
need to use almost everywhere partition of unity [21] as well as generalized product partition of unity. This issue on
imposing Dirichlet boundary conditions in meshless methods will be elaborated in a forthcoming paper.
Example 5.2. Consider three-dimensional Poisson’s equation �Du ¼ f on the polyhedral domain X shown in Fig. 14, whose
analytic solution is
Table 2
Three-d

�Du

RPP-

2
4
6
1

Fig. 14
partitio
uðx; y; zÞ ¼ xyzexþyþz ð46Þ
The Dirichlet boundary conditions are imposed along the entire boundary of X. For numerical test of this problem, we use
d ¼ 0:05 for the construction of the generalized product partition of unity.
imensional Poisson’s equation, �Du ¼ f , with analytic solution uðx; y; zÞ ¼ xyzexþyþz .

¼ f on Polyheral domain with essential BC

order kAbs: errk1 kRel: errkeng Computed Eng Matrix Condition No.

6.45E�01 4.99E�01 495.7366095938 1.36E+03
1.50E�03 3.32E�02 490.8555005157 9.65E+06
9.73E�08 8.59E�06 490.8505588268 1.80E+10

490.8505586819

. (Left) Diagram of the domain for Example 5.2 and the horizontally partitioning plane C4. (Right) Diagram of the plane section of the vertically
ning planes C1; C2; C3 of X.



Fig. 15. (Left) Absolute errors on the plane section by the x—y plane when RPP order = 6. The largest error (9.73E�08) occurs along the vertically slated
boundary (the north side boundary in Fig. 14). (Right) The contour curves of absolute errors (when RPP order ¼ 6) on five different plane sections by the
planes z ¼ 0; z ¼ 0:3; z ¼ 0:5; z ¼ 0:8; z ¼ 1. The sections are rotated by 180� so that the larger errors can be shown on the front side.
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In Table 2, we show the absolute errors in maximum norm and the relative errors in energy norm of computed solutions
of Example 5.2 by patchwise RPPM with use of the generalized product PU functions. The absolute errors (when RPP = 6) on
the horizontal slices of the domain shown in Fig. 14 are plotted in Fig. 15.

For brevity, in Fig. 14, the three-dimensional domain X is partitioned into eight hexahedral patches by the three vertical
planes C1; C2; C3 and one horizontal plane C4. However, we can partition the domain X into hexahedral patches by verti-
cally tilted planes, C1; C2; C3, and horizontally tilted plane C3 to get similar results.

6. Concluding remarks

The proposed method constructing a highly smooth piecewise polynomial (closed form) partition of unity with flat-top is
simple and efficient for the p-version type partition of unity FEM (PUFEM). However, it may have limitations to use for the
adaptive meshless methods because the width d of the non-flat-top parts, xnflt , can not be too small for the convergence of
meshless methods. This is because the error estimates proved in [21] are as follows:
ku� uapproxkL2ðXÞ 6
ffiffiffiffi
j
p XM

I¼1

eð0ÞI

� �2
 !1=2

and krðu� uapproxÞkL2ðXÞ 6
ffiffiffiffiffiffiffi
2j
p XM

I¼1

C
d

� �2

eð0ÞI;nflat

� �2
þ eð1ÞI

� �2
 !1=2

;

when

1. the domain X is partitioned into M patches, xI is the supports of PU functions WP
I , for I ¼ 1; . . . ;M, and cardfIjx 2 xIg 6 j,

for all x 2 X;
2. we are given a collection of local approximation spaces VI � H1ðXÞ that have the following local approximation proper-

ties: on each xI; I ¼ 1; . . . ;M, the function u can be approximated by a function v I 2VI such that ku� v Ik0;xI

6 �ð0ÞI ; ku� v Ik0;xnflat
I
6 �ð0ÞI;nflat; ku� v Ik1;xI

6 �ð1ÞI .

In using the Shepard PU functions, it is not easy to determine automatically the intersection of the supports of adjacent PU
functions for numerical integrals. Whereas it is easy to determine the intersection of the supports of adjacent product PU
functions, their flat-top parts, and their non-flat-top parts for numerical integrals of the product PU functions in two-dimen-
sional cases. However, it is not simple to determine automatically their intersections in three-dimensional cases.
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